Adjoint of Unbounded Operators

P. Sam Johnson

1/27

•

DQC

Outline of the talk

In the lecture, we define adjoint of unbounded linear operators on Hilbert spaces and discuss some results on adjoints.

Notations

- *H*, an infinite-dimensional Hilbert space (not necessarily separable) over the field K of real or complex scalars.
- D(T), the domain of an operator T
- R(T), the range of T
- N(T), the null space of T
- $L_2[0,1]$, the space of all square-integrable functions on [0,1]
- AC[0,1], the space of all absolutely continuous functions on [0,1]
- ℓ_2 , the space of all square-summable sequences

Let $T : D(T) \to H$ be a linear operator. If S is a linear operator such that for all $x \in D(T)$ and $y \in D(S)$

$$\langle Tx, y \rangle = \langle x, Sy \rangle,$$
 (1)

then S is called a **formal adjoint** of T.

The operator S_0 such that $D(S_0) = \{0\}$ is a formal adjoint of every operator. So we look for an operator satisfying (1) with a maximal domain, and such operator should be uniquely defined.

LA-2(P-85)N-1

Recall : Bounded case

Theorem 1.

Let H and K be Hilbert spaces and $T \in B(H, K)$. Then there is a unique $T^* \in B(K, H)$ such that

 $\langle Tx, y \rangle_{\mathcal{K}} = \langle x, T^*y \rangle_{\mathcal{H}}$ for all $x \in \mathcal{H}, y \in \mathcal{K}$.

The operator T^* is called the **adjoint** of T.

LA-2(P-15)T-14

In general, a bounded linear operator on an inner product space need not have an adjoint. The fact that the completeness is essential in Theorem 1.

Recall : Bounded case

Exercise 2.

Let H be a Hilbert space and $T : H \rightarrow H$ be a linear map. Suppose that there is a linear map $S : H \rightarrow H$ such that

$$\langle Tx, y \rangle = \langle x, Sy \rangle$$
 for all $x, y \in H$.

Then both operators T and S are bounded and $S = T^*$. LA-2(P-27)E-21

Exercise 3.

If T is bounded and if the relation (1) holds for all x,y in H, then S would be the uniquely defined bounded operator, called the "adjoint of T."

However, in the unbounded case (1) by itself, does not define S uniquely.

It is possible although not obvious that of all the operators satisfying (1) there will be one with a domain **which is maximal** (in the sense of set inclusion). It is this operator, T^* say, which provides the required generalization of the adjoint provided D(T) is dense in H.

Let T be a densely defined operator on H. The choice of $D(T^*)$ is clarified as follows:

Let $D(T^*)$ be the set of $y \in H$ such that there exists an z in H with

$$\langle Tx, y \rangle = \langle x, z \rangle$$
 for all $x \in D(T)$.

Given y, the element z is uniquely determined, as D(T) is dense, for if there is a \tilde{z} such that

$$\langle Tx, y \rangle = \langle x, \tilde{z} \rangle, \quad \text{then} \quad \langle x, z - \tilde{z} \rangle = 0,$$

we get $z = \tilde{z}$. (Note that unless D(T) is dense, this definition does not make sense).

Now set $z = T^*y$. It is easy to check that T^* is linear, and clearly

$$\langle Tx, y \rangle = \langle x, T^*y \rangle$$
, for all $x \in D(T)$ and $y \in D(T^*)$.

Thus (1) is satisfied with $S = T^*$, and further every S satisfying this equation is a restriction of T^* . Therefore, as asserted above, $D(T^*)$ is maximal.

In most cases of interest, $D(T^*)$ itself is dense in H.

Definition 4.

Suppose T is a linear operator from H into H with dense domain. Let $D(T^*)$ be the set of all elements y such that there is an z with

$$\langle Tx, y \rangle = \langle x, z \rangle$$
 for all $x \in D(T)$.

Let T^* be the operator with domain $D(T^*)$ and with $T^*y = z$ on $D(T^*)$ or equivalently assume that

$$\langle Tx, y \rangle = \langle x, T^*y \rangle$$
 for all $x \in D(T), y \in D(T^*)$.

 T^* is called the adjoint of T.

Exercise 5.

Show that $D(T^*)$ is the set of all elements $y \in H$ such that the linear functional $x \mapsto \langle Tx, y \rangle$ is continuous (bounded) on D(T). That is, $D(T^*) = \{y \in H : \text{the functional } x \mapsto \langle Tx, y \rangle \text{ is continuous on } D(T) \}.$

The denseness of domain is necessary and sufficient for existence of the adjoint. That is, T^* exists iff D(T) is dense in H.

Example 6.

Let
$$H = L_2[0,1]$$
. Define $T : H \to H$ by $Tf = f'$ with

$$D(T) = \left\{ f \in H : f \in AC[0,1], f' \in H, f(0) = f(1) = 0 \right\}.$$

Show that D(T) is dense and find T^* by giving its domain and action.

LA-2(P-88)E-2

э

12/27

< ロト < 同ト < ヨト < ヨト

Properties of adjoints

Exercise 7.

Let S and T be two densely defined operators on H. Show the following.

- 1. $(\alpha T)^* = \overline{\alpha} T^* \quad \forall \alpha \in \mathbb{C}.$
- 2. If $T \subset S$, then $S^* \subset T^*$.
- 3. If D(S + T) is dense in H, then $S^* + T^* \subset (S + T)^*$.
- 4. If D(ST) is dense, then $T^*S^* \subset (ST)^*$.
- 5. If S is an everywhere defined bounded operator, then $(S + T)^* = S^* + T^*$ and $(ST)^* = T^*S^*$.
- 6. $N(T^*) = R(T)^{\perp}$.
- 7. $R(T^*) \subseteq N(T)^{\perp}$.

LA-2(P-91)T-3

▲御▶ ▲注▶ ▲注▶

Note that $H \times H$ is naturally equipped with the inner product

$$\left\langle (x,y), (x',y') \right\rangle_{H \times H} = \langle x, x' \rangle_{H} + \langle y, y' \rangle_{H}$$

which makes it a Hilbert space. Define

$$U(x,y)=(y,-x) \quad \text{and} \quad V(x,y)=(y,x) \quad (x\in H,y\in H).$$

- 1. U and V are isomorphisms from $H \times H$ onto $H \times H$ with $U^2 = -\mathbb{I}$ and $V^2 = \mathbb{I}$.
- 2. U^{-1} and V^{-1} are defined by

$$U^{-1}(x,y) = (-y,x)$$
 and $V^{-1}(x,y) = (y,x)$ $(x \in H, y \in H).$

LA-2(P-95)R-5

Proposition 8.

If T is closed and injective, then T^{-1} is closed.

LA-2(P-95)P-6

A remarkable description of T^* in terms of T

The following result tells that once $G(T^*)$ is known, so are $D(T^*)$ and T^* .

Theorem 9.

- If T is a densely defined operator on H, then
 - 1. $G(T^*) = U[G(T)^{\perp}] = [UG(T)]^{\perp}$, (the orthogonal complement of UG(T) in $H \times H$.) LA-2(P-96)T-7

2.
$$G(T)^{\perp} = U^{-1}[G(T^*)].$$
 LA-2(P-97)T-7A

In general, $G(T^*)^{\perp} \neq U[G(T)]$. But if T is closed, then $G(T^*)^{\perp} = U[G(T)]$.

• Moreover,
$$H \times H = \overline{G(T)} \oplus UG(T^*)$$
.

15/27

Theorem 10.

Let T be a densely defined operator (may not be even closable). Then the operator T^* is closed. LA-2(P-97)T-8

One may say that the construction of the adjoint operator produces an operator which is **more stable** than T because T^* is always closed (irrespectively of whether T is or not).

Corollary 11.

Let T be a densely defined operator on H. If T is closable, then

1.
$$(\overline{T})^* = T^*$$
 (T and \overline{T} have the same adjoint).
2. $N(\overline{T}) = R(T^*)^{\perp}$.
LA-2(P-98)T-9
LA-2(P-94)P-4

Theorem 12.

If T is a densely defined closed operator on H, then

$$H \times H = UG(T) \oplus G(T^*),$$

a direct sum of two orthogonal subspaces.

LA-2(P-98)T-10

We proved that if T is densely defined, then $G(T^*) = [UG(T)]^{\perp}$. But in general, $G(T^*)^{\perp} \neq UG(T)$. When T is closed, $G(T^*)^{\perp} = UG(T)$.

≣ 17/27

Relation between adjoints and inverses

Exercise 13.

Let T be a densely defined operator on H. Show the following.

- 1. If *T* is injective and closed, then T^* is injective and $(T^{-1})^* = (T^*)^{-1}$.
- 2. If T is injective and invertible (T^{-1} is bounded), then T^* is injective and $(T^{-1})^* = (T^*)^{-1}$.
- 3. If T is injective and R(T) is dense in H, then T^* is injective and $(T^{-1})^* = (T^*)^{-1}$.

If $D(T^*)$ happens to be dense in H, then the operator T must be closable, as the result follows. Also, T^{**} is a natural (minimal) closed extension of T, i.e., $\overline{T} = T^{**}$.

Theorem 14.

Let $T : D(T) \to H$ be a densely defined operator on H. Then T is closable if and only if T^* is densely defined, in which case $\overline{T} = (T^*)^*$. LA-2(P-101)T-14

That is, denseness of domain of T^* is a necessary and sufficient condition for an operator T to be closable.

Results on adjoints

Theorem 15.

Let T be an everywhere defined operator on H such that $D(T^*)$ is dense in H. Then T is bounded. LA-2(P-102)E-15

Theorem 16.

Let T be a densely defined closed operator in H. Then $D(T^*)$ is dense and $T^{**} = T$. LA-2(P-102)E-15

For closable operators, we proved that $(\overline{T})^* = T^*$ and $\overline{T} = (T^*)^*$, hence the operation * behaves like \perp in inner product space.

(日) (同) (三) (三)

The domain of the adjoint can be quite small.

Exercise 17.

For every $k \in \mathbb{N}$, let the sequence $\{n_{k,\ell}\}_{\ell=1}^{\infty}$ of \mathbb{N} be chosen in such a way that

$$\{n_{k,\ell}: \ell \in \mathbb{N}\} \cap \{n_{j,\ell}: \ell \in \mathbb{N}\} = \emptyset \quad \text{for } j \neq k$$

and

$$\bigcup_{k\in\mathbb{N}} \{n_{k,\ell} : \ell\in\mathbb{N}\} = \mathbb{N}.$$

With these sequences, let us define the operator T on ℓ_2 with $D(T) = c_{00}$ by

$$T(f) = \left(\sum_{\ell=1}^{\infty} f_{n_1,\ell}, \sum_{\ell=1}^{\infty} f_{n_2,\ell}, \ldots\right).$$

Show that T^* exists but $D(T^*) = \{0\}$.

Ajoint of several operators is one operator.

Example 18.

Consider the operator, for $k \in \mathbb{N}$ $T_k = -i\frac{d}{dt}$ on the domain $D(T_k) = \{f \in C^k[0,1] : f(0) = f(1) = 0\}$ with the action $T_k : C^k[0,1] \rightarrow L_2[0,1]$. Prove the following :

- $1. \quad T_1 \supset T_2 \supset T_3 \supset \cdots \quad (\textit{Hint}: \ C^1[0,1] \supset C^2[0,1] \supset C^3[0,1] \ldots).$
- 2. None of them is closed.
- 3. Each T_k is closable.
- But closures of all T_k are the same; T₁ = T₂ = T₃ = ··· = T = −i d/dt on the domain D(T) = {f ∈ AC[0, 1] : f(0) = f(1) = 0}.

5.
$$T_1^* = T_2^* = \dots = T^* = -i \frac{d}{dt}$$
 on the domain $\left\{ f \in L^2[0,1] : f, f' \in AC[0,1] \right\}$.

Irrespectively of which T_k , one starts from, it is T^* the **important** operator, which in turn determines the closure \overline{T} , via $T^{**} = \overline{T}$.

(日)

Results on Closed Operators (analogous to bounded operators)

Theorem 19.

Let $T : D(T) \to H$ be a densely defined closed operator on H. Then R(T) is closed iff $T|_{D(T)\cap N(T)^{\perp}}$ is bounded from below. LA-2(P-106)T-18

Theorem 20.

Let $T : D(T) \rightarrow H$ be a densely defined closed operator on H. Then R(T) is closed iff $R(T^*)$ is closed. LA-2(P-107)T-19

Theorem 21.

Let $T : D(T) \to H$ be a densely defined closed operator on H and M be a closed subspace of H containing R(T). Then $T^*|_{D(T^*)\cap M}$ is bounded from below iff M = R(T).

23/27

Sac

Summary

- T is densely defined iff T^* exists.
- Let *T* be a **densely defined** (*T*^{*} exists). Then the following statements are true:
 - 1. T^* is closed.
 - 2. T^* is densely defined iff T is closable, in this case $\overline{T} = T^{**}$.

3.
$$N(T^*) = R(T)^{\perp}$$
.

- 4. $G(T^*) = [UG(T)]^{\perp} = U[G(T)^{\perp}]$. Applying U^{-1} , we get $G(T)^{\perp} = U^{-1}G(T^*)$ (since U^{-1} is isometry and preserves orthogonality).
- 5. $D(T^*) = \{0\}$ iff G(T) is dense in $H \times H$.
- 6. If T is injective and invertible, then $(T^{-1})^* = (T^*)^{-1}$.
- 7. $H \times H = \overline{G(T)} \oplus UG(T^*) = U^{-1}\overline{G(T)} \oplus G(T^*).$
- 8. $H \times H = G(T^*) \oplus UG(T^{**}) = UG(T^*) \oplus G(T^{**})$ (since $G(T^*)$ is always closed.)

Summary

• Let T be densely defined **closable** (T^* is densely defined). Then

1.
$$(\overline{T})^* = T^*$$
.
2. $\overline{T} = T^{**}$.
3. $N(\overline{T}) = R(T^*)^{\perp}$.

イロト イヨト イヨト イヨト

DQC

Summary

Let \mathcal{T} be densely defined **closed**. Then

- 1. $H \times H = UG(T) \oplus G(T^*)$. That is, $G(T^*)^{\perp} = UG(T)$.
- 2. $D(T^*)$ is dense and $T^{**} = T$.
- 3. $N(T) = R(T^*)^{\perp}$.
- 4. N(T) is a closed subspace of H.
- 5. R(T) is closed iff $R(T^*)$ is closed.
- 6. R(T) is closed iff $T|_{D(T)\cap N(T)^{\perp}}$ is bounded from below.
- 7. If T is injective, then T^{-1} is closed.
- 8. If *T* is injective, then $(T^{-1})^* = (T^*)^{-1}$.

References

- Joachim Weidmann, *Linear Operators in Hilbert Spaces*, Springer, (1980) (pages mainly from 88 to 91).

Walter Rudin, *Functional Analysis - Second Edition*, McGraw-Hill International Editions, (1991) (pages mainly from 347 to 356).

