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Outline of the talk

In the lecture, we define adjoint of unbounded linear operators on Hilbert

spaces and discuss some results on adjoints.
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Notations

H, an infinite-dimensional Hilbert space (not necessarily separable)

over the field K of real or complex scalars.

D(T ), the domain of an operator T

R(T ), the range of T

N(T ), the null space of T

L2[0, 1], the space of all square-integrable functions on [0, 1]

AC [0, 1], the space of all absolutely continuous functions on [0, 1]

`2, the space of all square-summable sequences
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Adjoint of an operator with dense domain

Let T : D(T )→ H be a linear operator. If S is a linear operator such that

for all x ∈ D(T ) and y ∈ D(S)

〈Tx , y〉 = 〈x ,Sy〉, (1)

then S is called a formal adjoint of T .

The operator S0 such that D(S0) = {0} is a formal adjoint of every

operator. So we look for an operator satisfying (1) with a maximal

domain, and such operator should be uniquely defined.

LA-2(P-85)N-1
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Recall : Bounded case

Theorem 1.

Let H and K be Hilbert spaces and T ∈ B(H,K ). Then there is a unique

T ∗ ∈ B(K ,H) such that

〈Tx , y〉K = 〈x ,T ∗y〉H for all x ∈ H, y ∈ K .

The operator T ∗ is called the adjoint of T . LA-2(P-15)T-14

In general, a bounded linear operator on an inner product space need not

have an adjoint. The fact that the completeness is essential in Theorem 1.
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Recall : Bounded case

Exercise 2.

Let H be a Hilbert space and T : H → H be a linear map. Suppose that

there is a linear map S : H → H such that

〈Tx , y〉 = 〈x ,Sy〉 for all x , y ∈ H.

Then both operators T and S are bounded and S = T ∗. LA-2(P-27)E-21
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Adjoint of an operator with dense domain

Exercise 3.

If T is bounded and if the relation (1) holds for all x,y in H, then S would

be the uniquely defined bounded operator, called the “adjoint of T .”

However, in the unbounded case (1) by itself, does not define S uniquely.

It is possible although not obvious that of all the operators satisfying (1)

there will be one with a domain which is maximal (in the sense of set

inclusion). It is this operator, T ∗ say, which provides the required

generalization of the adjoint provided D(T ) is dense in H.

P. Sam Johnson Adjoint of Unbounded Operators 7/27



Adjoint of an operator with dense domain

Let T be a densely defined operator on H. The choice of D(T ∗) is

clarified as follows:

Let D(T ∗) be the set of y ∈ H such that there exists an z in H with

〈Tx , y〉 = 〈x , z〉 for all x ∈ D(T ).

Given y , the element z is uniquely determined, as D(T ) is dense, for if

there is a z̃ such that

〈Tx , y〉 = 〈x , z̃〉, then 〈x , z − z̃〉 = 0,

we get z = z̃ . (Note that unless D(T ) is dense, this definition does not

make sense).

Now set z = T ∗y . It is easy to check that T ∗ is linear, and clearly

〈Tx , y〉 = 〈x ,T ∗y〉, for all x ∈ D(T ) and y ∈ D(T ∗).
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Adjoint of an operator with dense domain

Thus (1) is satisfied with S = T ∗, and further every S satisfying this

equation is a restriction of T ∗. Therefore, as asserted above, D(T ∗) is

maximal.

In most cases of interest, D(T ∗) itself is dense in H.
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Adjoint of an operator with dense domain

Definition 4.

Suppose T is a linear operator from H into H with dense domain. Let

D(T ∗) be the set of all elements y such that there is an z with

〈Tx , y〉 = 〈x , z〉 for all x ∈ D(T ).

Let T ∗ be the operator with domain D(T ∗) and with T ∗y = z on D(T ∗)

or equivalently assume that

〈Tx , y〉 = 〈x ,T ∗y〉 for all x ∈ D(T ), y ∈ D(T ∗).

T ∗ is called the adjoint of T .
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Adjoint of an operator with dense domain

Exercise 5.

Show that D(T ∗) is the set of all elements y ∈ H such that the linear

functional x 7→ 〈Tx , y〉 is continuous (bounded) on D(T ). That is,

D(T ∗) = {y ∈ H : the functional x 7→ 〈Tx , y〉 is continuous onD(T )}.

The denseness of domain is necessary and sufficient for existence of the

adjoint. That is, T ∗ exists iff D(T ) is dense in H.
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Adjoint of an operator with dense domain

Example 6.

Let H = L2[0, 1]. Define T : H → H by Tf = f ′ with

D(T ) =
{
f ∈ H : f ∈ AC [0, 1], f ′ ∈ H, f (0) = f (1) = 0

}
.

Show that D(T ) is dense and find T ∗ by giving its domain and action.

LA-2(P-88)E-2
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Properties of adjoints

Exercise 7.

Let S and T be two densely defined operators on H. Show the following.

1. (αT )∗ = αT ∗ ∀α ∈ C.

2. If T ⊂ S, then S∗ ⊂ T ∗.

3. If D(S + T ) is dense in H, then S∗ + T ∗ ⊂ (S + T )∗.

4. If D(ST ) is dense, then T ∗S∗ ⊂ (ST )∗.

5. If S is an everywhere defined bounded operator, then

(S + T )∗ = S∗ + T ∗ and (ST )∗ = T ∗S∗.

6. N(T ∗) = R(T )⊥.

7. R(T ∗) ⊆ N(T )⊥.

LA-2(P-91)T-3
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Adjoint of an operator with dense domain

Note that H × H is naturally equipped with the inner product〈
(x , y), (x ′, y ′)

〉
H×H

= 〈x , x ′〉H + 〈y , y ′〉H

which makes it a Hilbert space. Define

U(x , y) = (y ,−x) and V (x , y) = (y , x) (x ∈ H, y ∈ H).

1. U and V are isomorphisms from H × H onto H × H with U2 = −I
and V 2 = I.

2. U−1 and V−1 are defined by

U−1(x , y) = (−y , x) and V−1(x , y) = (y , x) (x ∈ H, y ∈ H).

LA-2(P-95)R-5

Proposition 8.

If T is closed and injective, then T−1 is closed. LA-2(P-95)P-6
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A remarkable description of T ∗ in terms of T

The following result tells that once G (T ∗) is known, so are D(T ∗) and T ∗.

Theorem 9.

If T is a densely defined operator on H, then

1. G (T ∗) = U[G (T )⊥] = [UG (T )]⊥, (the orthogonal complement of

UG (T ) in H × H.) LA-2(P-96)T-7

2. G (T )⊥ = U−1[G (T ∗)]. LA-2(P-97)T-7A

In general, G (T ∗)⊥ 6= U[G (T )]. But if T is closed, then

G (T ∗)⊥ = U[G (T )].

Moreover, H × H = G (T )⊕ UG (T ∗).
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T ∗ is more stable than T

Theorem 10.

Let T be a densely defined operator (may not be even closable). Then the

operator T ∗ is closed. LA-2(P-97)T-8

One may say that the construction of the adjoint operator produces an

operator which is more stable than T because T ∗ is always closed

(irrespectively of whether T is or not).
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Corollary 11.

Let T be a densely defined operator on H. If T is closable, then

1. (T )∗ = T ∗ (T and T have the same adjoint). LA-2(P-98)T-9

2. N(T ) = R(T ∗)⊥. LA-2(P-94)P-4

Theorem 12.

If T is a densely defined closed operator on H, then

H × H = UG (T )⊕ G (T ∗),

a direct sum of two orthogonal subspaces. LA-2(P-98)T-10

We proved that if T is densely defined, then G (T ∗) = [UG (T )]⊥. But in

general, G (T ∗)⊥ 6= UG (T ). When T is closed, G (T ∗)⊥ = UG (T ).
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Relation between adjoints and inverses

Exercise 13.

Let T be a densely defined operator on H. Show the following.

1. If T is injective and closed, then T ∗ is injective and

(T−1)∗ = (T ∗)−1. LA-2(P-98)T-11

2. If T is injective and invertible (T−1 is bounded), then T ∗ is injective

and (T−1)∗ = (T ∗)−1. LA-2(P-99)T-12

3. If T is injective and R(T ) is dense in H, then T ∗ is injective and

(T−1)∗ = (T ∗)−1. LA-2(P-100)T-13
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Results on adjoints

If D(T ∗) happens to be dense in H, then the operator T must be closable,

as the result follows. Also, T ∗∗ is a natural (minimal) closed extension of

T , i.e., T = T ∗∗.

Theorem 14.

Let T : D(T )→ H be a densely defined operator on H. Then T is closable

if and only if T ∗ is densely defined, in which case T = (T ∗)∗. LA-2(P-101)T-14

That is, denseness of domain of T ∗ is a necessary and sufficient condition

for an operator T to be closable.
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Results on adjoints

Theorem 15.

Let T be an everywhere defined operator on H such that D(T ∗) is dense

in H. Then T is bounded. LA-2(P-102)E-15

Theorem 16.

Let T be a densely defined closed operator in H. Then D(T ∗) is dense

and T ∗∗ = T. LA-2(P-102)E-15

For closable operators, we proved that (T )∗ = T ∗ and T = (T ∗)∗, hence

the operation ∗ behaves like ⊥ in inner product space.
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The domain of the adjoint can be quite small.

Exercise 17.

For every k ∈ N, let the sequence {nk,`}∞`=1 of N be chosen in such a way

that

{nk,` : ` ∈ N} ∩ {nj ,` : ` ∈ N} = ∅ for j 6= k

and ⋃
k∈N
{nk,` : ` ∈ N} = N.

With these sequences, let us define the operator T on `2 with D(T ) = c00
by

T (f ) =

( ∞∑
`=1

fn1,`,
∞∑
`=1

fn2,`, . . .

)
.

Show that T ∗ exists but D(T ∗) = {0}.
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Ajoint of several operators is one operator.

Example 18.

Consider the operator, for k ∈ N Tk = −i d
dt

on the domain

D(Tk ) = {f ∈ C k [0, 1] : f (0) = f (1) = 0} with the action Tk : C k [0, 1]→ L2[0, 1]. Prove the

following :

1. T1 ⊃ T2 ⊃ T3 ⊃ · · · (Hint : C1[0, 1] ⊃ C2[0, 1] ⊃ C3[0, 1] . . .).

2. None of them is closed.

3. Each Tk is closable.

4. But closures of all Tk are the same; T1 = T2 = T3 = · · · = T = −i d
dt

on the domain

D(T ) = {f ∈ AC [0, 1] : f (0) = f (1) = 0}.

5. T∗1 = T∗2 = · · · = T∗ = −i d
dt

on the domain
{
f ∈ L2[0, 1] : f , f ′ ∈ AC [0, 1]

}
.

Irrespectively of which Tk , one starts from, it is T ∗ the important

operator, which in turn determines the closure T , via T ∗∗ = T .
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Results on Closed Operators (analogous to bounded

operators)

Theorem 19.

Let T : D(T )→ H be a densely defined closed operator on H. Then

R(T ) is closed iff T |D(T )∩N(T )⊥ is bounded from below. LA-2(P-106)T-18

Theorem 20.

Let T : D(T )→ H be a densely defined closed operator on H. Then

R(T ) is closed iff R(T ∗) is closed. LA-2(P-107)T-19

Theorem 21.

Let T : D(T )→ H be a densely defined closed operator on H and M be a

closed subspace of H containing R(T ). Then T ∗|D(T∗)∩M is bounded

from below iff M = R(T ).
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Summary

T is densely defined iff T ∗ exists.

Let T be a densely defined (T ∗ exists). Then the following
statements are true:

1. T ∗ is closed.

2. T ∗ is densely defined iff T is closable, in this case T = T ∗∗.

3. N(T ∗) = R(T )⊥.

4. G (T ∗) = [UG (T )]⊥ = U[G (T )⊥].

Applying U−1, we get G (T )⊥ = U−1G (T ∗) (since U−1 is isometry

and preserves orthogonality).

5. D(T ∗) = {0} iff G (T ) is dense in H × H.

6. If T is injective and invertible, then (T−1)∗ = (T ∗)−1.

7. H × H = G (T )⊕ UG (T ∗) = U−1G (T )⊕ G (T ∗).

8. H × H = G (T ∗)⊕ UG (T ∗∗) = UG (T ∗)⊕ G (T ∗∗) (since G (T ∗) is

always closed.)
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Summary

Let T be densely defined closable (T ∗ is densely defined). Then

1. (T )∗ = T ∗.

2. T = T ∗∗.

3. N(T ) = R(T ∗)⊥.
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Summary

Let T be densely defined closed. Then

1. H × H = UG (T )⊕ G (T ∗). That is, G (T ∗)⊥ = UG (T ).

2. D(T ∗) is dense and T ∗∗ = T .

3. N(T ) = R(T ∗)⊥.

4. N(T ) is a closed subspace of H.

5. R(T ) is closed iff R(T ∗) is closed.

6. R(T ) is closed iff T |D(T )∩N(T )⊥ is bounded from below.

7. If T is injective, then T−1 is closed.

8. If T is injective, then (T−1)∗ = (T ∗)−1.

P. Sam Johnson Adjoint of Unbounded Operators 26/27



References

Joachim Weidmann, Linear Operators in Hilbert Spaces, Springer, (1980) (pages

mainly from 88 to 91).

Walter Rudin, Functional Analysis - Second Edition, McGraw-Hill International

Editions, (1991) (pages mainly from 347 to 356).

Israel Gohberg, Seymour Goldberg and Marinus A. Kaashoek, Basic Classes of

Linear Operators, Birkhauser Verlag, Berlin, 2000 (pages mainly from 208 to 210).

P. Sam Johnson Adjoint of Unbounded Operators 27/27


